Hypertrophic cardiomyopathy: from mutation to functional analysis of defective protein
نویسندگان
چکیده
AIM To analyze the genesis of hypertrophic cardiomyopathy on a large cohort of patients from molecular genetics point of view and perform the functional analysis of the 3D molecular model of defective myosin-7 protein in silico. METHODS The study enrolled 153 patients with diagnosed hypertrophic cardiomyopathy from different parts of the Czech Republic. DNA samples were analyzed for mutations in exons 21 and 22 of the MYH7 gene, which have been associated with high mutation clustering. The 3D model of human myosin-7 was built using the x-ray structure of nucleotide-free scallop myosin S1 as the structural template. We performed de novo structure prediction of mutant and wild type peptides spanning the 769-788 amino acids region of the myosin-7 protein. RESULTS The Arg870His and Asp778Val amino acid alterations were found in 2 unrelated patients with a severe form of hypertrophic cardiomyopathy. The Asp778Val variation was chosen for subsequent 3D molecular modeling in silico. The mutation of the Asp by Val not only changes the character of the interaction pattern with other amino acids or ions but Val, being a small hydrophobic amino acid, can also completely change the stability of the region. CONCLUSION Mutation location in the MYH7 gene and changes in amino acid composition may have a crucial negative impact on the outcome of the disease in patients with hypertrophic cardiomyopathy. In addition, a mutation that changes the charge of the amino acid is more likely to affect protein function than a conservative mutation.
منابع مشابه
A New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy
Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypoton...
متن کاملDIFFUSE CORONARY ARTERIAL ECTASIA WITH HYPERTROPHIC CARDIOMYOPATHY
A 40 year old male, a known case of hypertrophic cardiomyopathy, was admitted for catheterization. At catheterization and angiography, septum was hypertrophied to about 5cm and diffuse coronary artery aneurysm was revealed. We found no previous report of coronary artery aneurysm in hypertrophic cardiomyopathy.
متن کاملInvestigation of Polymorphisms in Non-Coding Region of Human Mitochondrial DNA in 31 Iranian Hypertrophic Cardiomyopathy (HCM) Patients
The D-loop region is a hot spot for mitochondrial DNA (mtDNA) alterations, containing two hypervariable segments, HVS-I and HVS-II. In order to identify polymorphic sites and potential genetic background accounting for Hypertrophic CardioMyopathy (HCM) disease, the complete non-coding region of mtDNA from 31 unrelated HCM patients and 45 normal controls were sequenced. The sequences were aligne...
متن کاملFirst description of germline mosaicism in familial hypertrophic cardiomyopathy.
Familial hypertrophic cardiomyopathy is a genetically and phenotypically heterogeneous disease caused by mutations in seven sarcomeric protein genes. It is known to be transmitted as an autosomal dominant trait with rare de novo mutations.A French family in which two members are affected by hypertrophic cardiomyopathy was clinically screened with electrocardiography and echocardiography. Geneti...
متن کاملNovel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization Of cardiac transcript and protein.
Familial hypertrophic cardiomyopathy is a disease generally believed to be caused by mutations in sarcomeric proteins. In a family with hypertrophic cardiomyopathy linked to polymorphic markers on chromosome 11, we found a new mutation of a splice donor site of the cardiac myosin-binding protein-C gene. This mutation causes the skipping of the associated exon in mRNA from lymphocytes and myocar...
متن کامل